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ABSTRACT 27 

The use of high resolution imagery in remote sensing has the potential to improve 28 

understanding of patch level variability in plant structure and community composition that may 29 

be lost at coarser scales. Random forest (RF) is a machine learning technique that has gained 30 

considerable traction in remote sensing applications due to its ability to produce accurate 31 

classifications with highly dimensional data and relatively efficient computing times.  The aim of 32 

this study was to test the ability of RF to classify five plant communities located both on and off 33 

prairie dog towns in mixed grass prairie landscapes of north central South Dakota, and assess the 34 

stability of RF models among different years.  During 2015 and 2016, Pleiades satellites were 35 

tasked to image the study site for a total of five monthly collections each summer (June-36 

October).  Training polygons were mapped in 2016 for the five plant communities and used to 37 

train separate 2015 and 2016 RF models.  The RF models for 2015 and 2016 were highly 38 

effective at predicting different vegetation types associated with, and remote from, prairie dog 39 

towns (misclassification rates < 5% for each plant community).  However, comparisons between 40 

the predicted plant community map using the 2015 imagery and one created with the 2016 41 

imagery indicate 6.7% of pixels on-town and 24.3% of pixels off-town changed class 42 

membership depending on the year used.  Given the low model misclassification error rates, one 43 

would assume that low changes in class belonging between years.  The results show that while 44 

RF models may predict with a high degree of accuracy, overlap of plant communities and inter-45 

annual differences in rainfall may cause instability in fitted models.  Researchers should be 46 

aware of similarities between target plant communities as well as issues that may arise with 47 

using single season or single year images to produce vegetation classification maps.  48 

 49 
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INTRODUCTION 53 

Remote sensing of rangelands greatly improves our ability to study and understand 54 

complex ecological interactions across the landscape. One of the main advantages of remote 55 

sensing data is its capacity to cover wide areas, allowing assessment of plant communities at 56 

landscape level scales as compared to traditional point-based assessments (Ramoelo et al. 2015; 57 

Yu et al. 2018).  Numerous studies have demonstrated the utility of remote sensing applications 58 

in monitoring rangeland condition, including mapping of vegetation communities, plant species 59 

composition, biomass estimation, and impact of grazing intensity on the landscape (Blanco et al. 60 

2008; Franke et al. 2012).  Successive images throughout a growing season may potentially help 61 

explain patterns of cattle distribution and landscape utilization across temporal scales, or capture 62 

phenological changes within the landscape to distinguish differences in warm- and cool-season 63 

grass life history, or changes associated with early brown-down in forb- versus grass-dominated 64 

communities on prairie dog towns. 65 

Within the Northern Great Plains, black tailed prairie dog colonization is an issue of 66 

concern for livestock producers (Miller et al. 2007).  Competition between prairie dogs and 67 

livestock is a major concern for land managers looking to optimize beef production while still 68 

conserving wildlife species (Augustine and Springer 2013).  Prairie dogs can reduce availability 69 

of forage for livestock by directly reducing the quantity of forage available  (through direct 70 

consumption, clipping plants to increase predator detection, and building soil mounds), and by 71 
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changing species composition (Derner et al. 2006).  Older core areas of prairie dog towns often 72 

become characterized by extensive areas of bare ground and low vegetation production, which is 73 

generally limited to annual forb and dwarf shrub species.  Pastures containing extensive areas of 74 

bare ground due to prairie dog colonization may potentially depress livestock forage intake rates 75 

and ultimately beef production.  Understanding the impact of prairie dogs on plant communities, 76 

and use patterns of livestock within rangelands occupied by prairie dogs requires the ability to 77 

map plant communities at landscape scales.   78 

Advances in remote sensing technology have facilitated the mapping and assessment of a 79 

broad range of habitats at different scales (Corbane et al. 2015). For example, Schmidtlein et al. 80 

(2007) used hyperspectral imagery at 2m resolution in combination with ordination techniques to 81 

map functional plant group gradients in a Bavarian pasture.   Within the Delaware Gap National 82 

Recreation Area, multiple Landsat 7 scenes were used (30m resolution) with classification tree 83 

algorithms to map forest and plant communities for the National Park Service Vegetation 84 

Mapping Program (de Colstoun et al. 2003). In Majella National Park, Italy, 4m resolution 85 

imagery was used with NDVI to map and predict grass and herbaceous biomass variability over 86 

a 200 km2 area (Cho et al. 2007).  While the focus of many of these remote sensing studies is on 87 

mapping plant communities at landscape scales to study land use changes and address 88 

conservation related issues, the utility of using thematic maps derived from high resolution 89 

satellite imagery to study plant and animal interactions has been less explored. 90 

Several methods for accurately classifying plant communities using remote sensing 91 

techniques have been used in numerous ecological and natural resource studies. One method, 92 

random forest classification (RF), has gained considerable traction in the remote sensing 93 

community for its ability to produce accurate classifications, handle highly dimensional data, and 94 
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provide efficient computing times (Belgiu and Drăguţ 2016). RF is seen as an improvement over 95 

simple classification tree analysis by reducing noise and misclassification of outliers (Laliberte et 96 

al. 2007; Nitze et al. 2015).  RF is an ensemble decision tree classifier which combines bootstrap 97 

sampling to construct several individual decision trees from which a class probability is assigned 98 

(Mellor et al. 2013).  RF builds each tree using a deterministic algorithm selecting a random set 99 

of variables and a random sample from the calibration data set (Ramoelo et al. 2015).       100 

The utility of random forest algorithms has been proven in remote sensing applications.   101 

Lowe and Kulkarni (2015) showed that RF outperformed maximum likelihood, support vector 102 

machine, and neural network classification models using two Landsat scenes.  Ramoelo et al. 103 

(2015) successfully used RF modeling to predict leaf nitrogen content using World-View 2 104 

satellite images in grassland and forest communities.  Similarly, Mutanga et al. (2012) concluded 105 

that RF regression modelling provided an effective methodology for variable selection and 106 

predicting biomass in wetland environments. The greatest limitation of the general use of RF has 107 

been, and continues to be, due to the lack of off-the-shelf tools for RF implementation within the 108 

most common GIS and remote sensing software packages (Hamiton 2013). 109 

Considerable research has focused on the application of RF classification across different 110 

plant communities at various scales, however, concerns exist over the transferability of these 111 

models to different sites or between seasons.  Previous research has shown that RF models have 112 

a high degree of classification accuracy at local scales, but model accuracy decreases 113 

significantly when applied to spatially separated sites, showing a lack of stability in the model 114 

(Juel et al. 2015).  Other research has focused on the use of seasonality of image acquisition on 115 

improvement of RF models due to spectral differences in plant communities as a result of 116 

phenological change during a growing season.  Corcoran et al. (2013) showed an improvement 117 
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of RF model accuracy in classifying wetlands in northern Minnesota with the inclusion of spring 118 

Landsat 5 images across two years over a full season versus summer only, and fall only models.  119 

 Many of the plant community classification studies in remote sensing tend to focus on 120 

acquiring a single image or multiple images across a single growing season, reducing the 121 

influence of inter-annual precipitation on NDVI values (Adjorlolo et al. 2014; Beeri et al. 2007; 122 

Guo et al. 2000).  Furthermore, most research studies focus solely on spectral differences in plant 123 

communities and fail to analyze community differences on the ground at the species level (de 124 

Colstoun et al. 2003; Geerken et al. 2005).  While classification rates are often reported in 125 

studies, the potential overlap in plant community species is rarely explored as a potential source 126 

of error within the models.  Additionally, very little research has examined how yearly 127 

differences in NDVI values across plant communities can alter classification models, especially 128 

in high resolution satellite imagery.   129 

We conducted a large, collaborative study from 2012-2016 designed to evaluate livestock 130 

production on mixed-grass prairie pastures with varying levels of prairie dog occupation. A 131 

major goal of that study was to determine which plant communities on the pastures cattle 132 

preferred to graze, and how those preferences shifted within and between years. Plant 133 

communities on the site were categorized based on location (on- or off-town) and visually 134 

apparent dominant plant functional groups.  We expected the plant communities to remain 135 

relatively stable during the study, however their signatures on satellite imagery could change 136 

within and between years as a result of the timing and magnitude of rainfall and dry periods, 137 

timing of green up, phenological progression, and other factors. The overall goal, then, was to 138 

develop maps that accurately classify plant communities based on satellite imagery collected 139 

between seasons and years. Specific objectives of this study were to 1) determine differences in 140 
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the five identified plant communities based on species composition, 2) assess the utility of using 141 

a RF model with high resolution satellite imagery to classify plant communities of interest within 142 

the Northern Great Plains, and 3) determine the stability of the RF model when using subsequent 143 

years of satellite imagery with identical training data. Our ability to map and understand these 144 

plant dynamics and patterns at large scales will give researchers insight into applying RF models 145 

across years.  Research from this study will allow us to better assess how plant communities 146 

drive cattle foraging behavior, and evaluate how changes throughout a growing season can cause 147 

cattle to shift behavior in response to new resources becoming available.   148 

METHODS 149 

Study site 150 

The study area (45.74N, 100.65W) is located near McLaughlin, South Dakota on a 151 

northern mixed-grass prairie ecosystem.  Native prairie pastures (810 ha total area) were leased 152 

from 2012-2016; pastures were continuously stocked with yearling steers from June-October of 153 

each year to achieve 50% utilization.  Of the 810 ha, approximately 186 ha were occupied by 154 

black-tailed prairie dogs (Cynomys ludovicianus).  Predominant soils at the site are clays and 155 

loams. Ecological sites, and the plant communities they support vary widely; Loamy and Clayey 156 

are the predominant Ecological Sites at the site with inclusions of Dense Clay, Shallow Clay, and 157 

Thin Claypan (Barth et al. 2014).  Plant species dominating the site are largely native, including 158 

western wheatgrass (Pascopyrum smithii Rydb.), green needlegrass (Nassella viridula Trin.), and 159 

needle-and-thread (Hesperostipa comata Trin. & Rupr), intermixed with blue grama (Bouteloua 160 

gracilis Willd. Ex Kunth), buffalograss (Bouteloua dactyloides Nutt.), and sedges (Carex spp.). 161 

The most common non-native species on the site is Kentucky bluegrass (Poa gracilis Boivin & 162 

Love). Woody draws occupy moist drainage areas; vegetation consists primarily of bur oak 163 
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(Quercus macrocarpa Nutt.), American plum (Prunus americana Marshall), and chokecherry 164 

(Prunus virginiana L.). These draws are frequently flanked by snowberry-dominated patches 165 

(Symphoricarpos occidentalis Hook.).  Plant communities on areas occupied by prairie dog 166 

towns on the site are largely dominated by western wheatgrass and shortgrasses (buffalograss, 167 

blue grama, and sedges) intermixed with patches of bare ground and annual forb dominated 168 

areas.  Common annual forbs on prairie dog towns include prostrate knotweed (Polygonum 169 

aviculare L.), fetid marigold (Dyssodia papposa Vent.), dwarf horseweed (Conyza ramosissima 170 

Cronquist), and scarlet globemallow (Sphaeralcea coccinea Nutt.).  Mean annual rainfall at the 171 

site is 446 mm and average growing season (May through September) temperature is 15.3ºC  172 

(Mesonet). 173 

 Five plant communities of interest for our study site were identified: 1) Forb-dominated 174 

sites on prairie dog towns (PDF), 2) Grass-dominated sites on prairie dog towns (PDG), 3) 175 

Snowberry-dominated sites off-town (SNOW), 4) Cool season grass-dominated sites off-town 176 

(COOL), and 5) Warm season-dominated sites off-town (WARM). 177 

Training sites 178 

To facilitate classification, training site polygons were mapped for PDF, PDG, COOL, 179 

WARM, and SNOW plant communities using ArcPad for Trimble GPS units in the summer of 180 

2016.  Twenty training sites were mapped for each of the plant communities except WARM, for 181 

which only 8 sites were mapped due to the difficulty of finding homogenous stands of warm 182 

season grasses. Plant species in the Northern Great Plains are dominated by cool season species; 183 

warm season species, where they occur, are typically intermixed into stands of cool season 184 

species. Training sites for each plant community were selected from across the entire study area 185 

to capture potential site differences across research pastures.  Sites were mapped in the field by 186 
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walking the perimeter of the plant community patch with a Trimble GPS unit.  Training polygon 187 

perimeter boundaries were always at least 3 meters interior of patch edge to minimize error 188 

introduced to the training data as a result of GPS signal noise. Identified patches were then 189 

converted into a polygon shapefile within ArcGIS to be used as training polygons for the RF 190 

classification algorithm.  Within each training site polygon, three 0.25 m2 plots were randomly 191 

located.  Within each plot, percent cover by species was recorded in the summer of 2016 at the 192 

time of polygon mapping. 193 

Plant Community Analysis 194 

Plant community analysis was performed on vegetation data collected from the three 0.25m2 195 

plots measured in each training polygon. Differences between plant community compositions 196 

were determined using a Multi-Response Permutation Procedure (MRPP) with the Sorensen 197 

Bray-Curtis distance method.  MRPP is a nonparametric procedure used for testing hypotheses 198 

between two or more groups (Mitchell et al. 2015).  Differences in community compositions 199 

were analyzed separately between on-town groups (PD = PDF and PDG) and off-town groups 200 

(NPD = COOL, WARM, and SNOW).  Although differences between all 5 plant communities 201 

are likely to occur, comparisons between on-town and off-town were not made. On-town and 202 

off-town sites were mutually exclusive from each other; for example, PDG cannot occur off-203 

town.  To analyze trends in species composition between plant community plots, Non-metric 204 

Multidimensional Scaling (NMS) ordination was used (Kruskal 1964).  Only species that 205 

occurred in 3 or more plots were included in the ordination analysis.  NMS analysis was 206 

conducted using the Sorensen Bray-Curtis distance method with 250 iterations and a stability 207 

criterion of 0.00001.  Analysis was repeated five times to confirm ordination pattern in the data.  208 

Similarity index matrices were generated to compare plot differences between off-town plant 209 

https://doi.org/10.5194/bg-2019-194
Preprint. Discussion started: 20 June 2019
c© Author(s) 2019. CC BY 4.0 License.



10 
 

communities and between on-town plant communities and averaged by plant community.  All 210 

ordination analyses (MRPP and NMS) were performed using PC-ORD 6 software (McCune and 211 

Mefford 2002). 212 

Imagery 213 

During the summers of 2015 and 2016, Pleiades satellites were tasked to image the study 214 

site.  Pleiades satellites, which are members of the SPOT family of satellites, are operated by 215 

AIRBUS Defense and Space.  This platform was chosen due to its high spatial resolution (0.5 m 216 

pan chromatic, 2 m multispectral) and four band spectral resolution: pan chromatic (480-830 217 

nm), red (600-720nm), green (490-610 nm), blue (430-550 nm), and near infrared (750-950 nm).  218 

Pleiades satellites were designed for commercial tasking and monitoring, allowing multiple 219 

revisits to a project site.  A total of ten image collections were acquired in the summer of 2015 220 

and 2016 (five each year) from June through October during the 1st-15th of each month (Table 1). 221 

Image collection times were chosen to correspond to the time periods when cattle were actively 222 

grazing on the site.  Multispectral images were pan-sharpened and orthorectified by the image 223 

provider (Apollo Imaging Corp).  Boundaries of the prairie dog town were mapped in the fall of 224 

2015 using a handheld Trimble GPS unit. Post collection processing of the images included 225 

extracting off-town and on-town locations using the “Extract By Mask” tool in ArcGIS.  226 

Separate RF models were developed for on-town and off-town plant communities because such 227 

plant communities are mutually exclusive on the site (e.g. PDG cannot exist at off-town 228 

locations).  Each monthly image collection was converted into an NDVI image using the 229 

formula: 230 

𝑁𝐷𝑉𝐼 =  
𝑁𝐼𝑅−𝑅𝑒𝑑

𝑁𝐼𝑅+𝑅𝑒𝑑
 231 

Random Forest model 232 
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For the RF model, the Random Forest package of the Comprehensive R Archive Network 233 

(CRAN) implemented by Liaw and Wiener (2002) was utilized.  Training data were constructed 234 

by stacking all satellite imagery spectral bands (Red, Blue, Green, and NIR) and NDVI bands for 235 

each month of each year (25 total dimensions per year) to create a raster stack for each year’s 236 

imagery (2015 and 2016).  To train the model, pixel values were extracted from the satellite 237 

imagery raster stack for each training polygon mapped in the field.  The random forest models 238 

were built using 100 decision trees and default number of nodes at each split, with plant 239 

community data as the response category (WARM, COOL, SNOW, PDF, PDG) and spectral 240 

band values as the predictor.  Models built for comparison include 2015 off-town, 2015 on-town, 241 

2016 off-town, and 2016 on-town.  A combined years model was also constructed using all 242 

available spectral data from 2015 and 2016 (50 dimensions).   243 

Within the random forest package, Out of Bag (OOB) error rates were calculated by 244 

reserving one-third of the training data to test the accuracy of the predictions.  Models were then 245 

used to predict class belonging for 2015 and 2016 raster stacks and the combined 2015 and 2016 246 

stack.  To assess the stability of the RF models from year to year, the “Combinatorial And” tool 247 

in ArcGIS was used to create a new raster combining plant community prediction data from 248 

2015 and 2016.  The output was used to calculate percent of pixels that were unchanged between 249 

the 2015 and 2016 model predictions and percent of change that occurred between years for 250 

plant community predictions.   251 

Results and Discussion 252 

MRPP pairwise comparisons were made within on-town communities (PDF vs. PDG) 253 

and within off-town communities (COOL vs. WARM vs. SNOW), but not between on- and off-254 

town communities (Table 2). Each plant community was significantly different from all other 255 
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communities within its on-town or off-town area (P < 0.001).  Substantial differences are evident 256 

between off-town plant communities in the 2-D plot of the NMS ordination (final stress = 257 

15.465, instability < 0.00001 after 98 iterations), with some overlap occurring between 258 

communities (Figure 1).  The On-Town 2-D NMS ordination plot (final stress = 15.591, 259 

instability = 0.0005 after 50 iterations) also indicates substantial differences between 260 

communities, but with fairly minimal overlap (Figure 1).  While there is some overlap between 261 

plant communities, in general similarities between plant communities are low, with a similarity 262 

index generated from a Sorensen (Bray-Curtis) distance matrix of 21.5 – 27.9% when comparing 263 

off-town plant communities and 15.6% when comparing PDF and PDG (Table 2).   264 

Variable importance factor graphs indicate that NDVI training values by month tend to 265 

contribute the most to each model for both years, both on- and off-town (Figure 2).  Similar 266 

results were observed by (Mishra and Crews 2014), where spectral classification features (mean 267 

NDVI or ratio NDVI) were the most significant for classifying vegetation morphology in a 268 

savanna grassland.  Differences between importance of months between years within site is 269 

likely the result of interannual precipitation timing between the years, with plant communities 270 

greening up or browning down earlier or later depending on seasonal rainfall.  Results from the 271 

RF model show low OOB misclassification error rates (Table 3) indicating a high degree of 272 

accuracy in the model.  The lower similarity index (Table 2) for on-town communities compared 273 

to off-town communities may help explain the lower OOB classification error rates (Table 3) as 274 

well as the lower frequency of pixels changing class in the on-town communities (Table 4).  275 

OOB error rate was below 5% for all models.  OOB accuracy is an unbiased estimate of the 276 

overall classification accuracy eliminating the need for cross-validation (Breiman 2001).   277 

Lawrence et al. (2006) showed OOB error rates to be reliable estimates of class accuracy for 278 
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identifying invasive species.  Similarly, OOB error rates have been reported to be reliable in 279 

mapping corn and soybean fields across multiple years (Zhong et al. 2014).  Belgiu and Drăguţ 280 

(2016) acknowledge that the reliability of OOB error measurements needs to be further tested 281 

using a variety of datasets in different scenarios 282 

Consistency in error rates for plant communities appears to indicate stability in the 2015 283 

and 2016 RF models which used identical training sites on consecutive yearly satellite imagery.  284 

However, when comparing yearly predicted plant community maps, differences between 285 

community classifications are slightly more pronounced, indicating the models may not be as 286 

stable as predicted based solely on the OOB error rates.  The pixels that were classified as 287 

representing one plant community in 2015 and a different one in 2016 were 24.3% of the total 288 

off-town pixels and 6.7% of total on-town pixels (Table 4).  The pixels changing from COOL to 289 

SNOW and SNOW to COOL represented the highest percentage of pixels that changed plant 290 

community in off-town areas.  COOL and SNOW plant communities, however, occupied the 291 

largest area on the site, and represented 70.3 and 21.0% of total pixels in 2015 and 68.5 and 25.1 292 

% of total off-town pixels in 2016, respectively.   293 

It is unlikely in this northern mixed-grass prairie ecosystem that all the changes in plant 294 

communities indicated by classification of pixels were real changes from one plant community 295 

type to another over one year. Such major shifts in species composition typically occur much 296 

more slowly. The results from the plant community analysis indicate training sites were chosen 297 

appropriately to account for differences in species composition on the ground, therefore apparent 298 

changes are much more likely due to factors that affect the spectral signature of the vegetation. 299 

One explanation for the difference in year to year classification could be attributed to the 300 

interannual variability of rainfall between 2015 and 2016 (Figure 3).  While overall total rainfall 301 
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between years was similar, differences in timing of precipitation that occurred likely affected 302 

timing of green up and dormancy for many of the cool and warm season species on the site. This, 303 

then, would create different NDVI patterns between years (Figure 4). Wehlage et al. (2016) for 304 

example, found that yearly rainfall differences resulted in large differences in NDVI and biomass 305 

measurements across two years in a dry mixed-grass prairie. Goward and Prince (1995) 306 

suggested that the relationship between NDVI and annual rainfall in any given year also depends 307 

on the previous year history of rainfall at the site, and Oesterheld et al. (2001) showed that 308 

annual above ground primary production of shortgrass communities is related to current as well 309 

as previous two years precipitation. The above average rainfall at the study site in 2015 could 310 

have added to the increase in average NDVI in 2016 when compared to 2015 through an increase 311 

in cumulative biomass or production at the site.  Another possible cause for changes in plant 312 

community classifications between years is overlap of plant community species where two plant 313 

communities share a boundary. The edges of plant communities in the NGP are seldom sharp; 314 

more often there is a transition zone, where species from each community intermingle. This, 315 

along with variability in phenological development of different plants (e.g. cool season vs. warm 316 

season) associated with precipitation, as mentioned above, could result in pixels appearing to be 317 

associated with one plant community in one year and its neighboring plant community the next. 318 

It should also be noted that plant communities in the region, which are predominantly comprised 319 

of cool season grasses, often include varying levels of warm season species; and snowberry 320 

thickets often have an understory of grasses, especially near the perimeter. Thus one should 321 

expect some level of spectral mixing within each community, and the possibility that climatic 322 

factors could result in changes in NDVI values that, at least initially, might suggest apparent 323 

changes between plant communities.   324 
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As noted above, one issue with using categorically classified vegetation maps is that plant 325 

communities in space are rarely mutually exclusive, and tend to change along a continuum with 326 

environmental gradients (Equihua 1990).  Thus, within both on-town and off-town plant 327 

communities, transition zones are likely to account for a portion of the classification change 328 

between plant communities between years (Figure 5).   Alternative approaches to mapping plant 329 

communities can be the recognition of fuzzy properties enabling a single point in space to exhibit 330 

characteristics of a number of plant communities (Duff et al. 2014; Fisher 2010).  For example, 331 

Schmidtlein et al. (2007) used NMS of species data in combination with imaging spectroscopy to 332 

produce ordination maps of community structure.  While fuzzy classification maps are more 333 

likely to give a better picture of plant community composition on a per pixel basis, they are also 334 

more difficult to use to draw inferences of species dominance and livestock use across 335 

landscapes.   336 

A final RF model combining all available bands and NDVI values for 2015 and 2016 337 

reduced error rates for all plant communities below 1% (Table 3).  While we have shown that 338 

error rates may not result in more stable predictions, using all available data for a model will 339 

likely improve accuracy and result in a more accurate thematic map (Figure 6).    Zhou et al. 340 

(2018) using RF models showed that using a combination of four seasons of Sentinel-1 images 341 

and a GaoFen-1 satellite winter image produced the highest classification rate of urban land 342 

cover scenes over individual seasonal images.   Likewise, several other studies have reported 343 

increases in classification accuracy in RF models with the addition of combined seasonal images, 344 

hyperspectral data, LiDAR images, radar (SAR) images, and ancillary geographical data such as 345 

elevation and soil types (Corcoran et al. 2013; Pu et al. 2018; Shi et al. 2018; Xia et al. 2018; Yu 346 

et al. 2018).  RF models have the ability to handle highly dimensional correlated data, and data 347 
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combined from multiple different data sources across different temporal scales. The internal 348 

information provided by the model, such as variable importance, can be a useful tool for 349 

researchers to select features of greatest importance to reduce computation times in the instance 350 

of large datasets.  At the size of our study area (810 ha) and a maximum of 50 variables, the 351 

combined 2015-16 data model only slightly added to computation time, but not enough to 352 

warrant feature trimming from the dataset.  Variable importance plots from the combined data 353 

model also indicate that different months between years contribute highly to the classification 354 

accuracy between models.  For example June 2016 NDVI and October 2015 NDVI were the 355 

most important for classification of the data based on the variable importance plot from the 356 

combined years’ model.   357 

Conclusions  358 

Stability of models is important when applying similar techniques across different sites, 359 

plant communities, and in this case years.  Differences in year-to-year NDVI values may alter 360 

classification results; those differences may be even more pronounced if only one or two satellite 361 

imagery scenes are used from a single year.  One of the main benefits to RF classification in 362 

remote sensing is the relatively fast computing time (Belgiu and Drăguţ 2016), and, given the 363 

availability of free satellite imagery, researchers would be prudent to include multiple images 364 

across years and seasons in their model to improve accuracy.  Furthermore, while the desired 365 

outcome is often to produce thematic maps, recognizing that plant communities rarely exist in 366 

discrete communities is important when trying to interpret remotely sensed classification maps.  367 

This is likely to be magnified as pixel size increases, resulting in less “pure” vegetation structure 368 

in the classified pixel.  Further work should examine the reliability of OOB error rates across 369 
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different scenarios, and the influence of year and timing of image acquisition on classification 370 

results.   371 
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Tables and Figures 543 

Table 1. Acquisition dates of Pleiades satellite imagery tasked for each month (June – October) in 2015 
and 2016. 

    

2015 Dates of Acquisition 2016 Dates of Acquisition 

6/1/2015 6/5/2016 

7/9/2015 7/2/2016 

8/4/2015 8/2/2016 

9/1/2015 9/11/2016 

10/8/2015 10/1/2016 

 544 

Table 2: Similarity index (Sorensen (Bray-Curtis) distance method) values averaged by plot across 
plant communities.    

    

Community1 Similarity Index (%) 

COOL vs. SNOW 27.9 

COOL vs. WARM 27.6 

SNOW vs. WARM 21.5 

PDG vs. PDF 15.6 
1Plant communities on prairie dog towns are grass-dominated (PDG) and forb-dominated (PDF); 545 

plant communities in off-town areas are cool season grass-dominated (COOL), warm season 546 

grass-dominated (WARM), and snowberry-dominated (SNOW). 547 

 548 

 549 
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 550 
 551 

Figure 1. NMS ordination plots for plant communities located on and off of prairie dog towns, 552 

based on plant cover by species data collected in 2016 on the study site in north central South 553 

Dakota.  Plant communities on prairie dog towns are grass-dominated (PDG) and forb-554 

dominated (PDF); plant communities in off-town areas are cool season grass-dominated 555 

(COOL), warm season grass-dominated (WARM), and snowberry-dominated (SNOW). 556 
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Table 3: Out of Bag misclassification error rates (%) for each plant community for 2015, 2016, and combined year 
random forest models. 

        

Plant Community1 2015 Model 2016 Model 2015-2016 Combined Model 

COOL 0.20% 0.20% 0.03% 

SNOW 2% 2% 0.60% 

WARM 3% 5% 0.70% 

PDG 0.30% 0.20% 0.07% 

PDF 0.90% 0.70% 0.30% 
1 Plant communities on prairie dog towns are grass-dominated (PDG) and forb-dominated (PDF); 558 

plant communities in off-town areas are cool season grass-dominated (COOL), warm season 559 

grass-dominated (WARM), and snowberry-dominated (SNOW). 560 

 
Table 4: Percent of pixels within each area (prairie dog town and off-town) for each plant community 561 
that remain unchanged and are changed between class belonging between 2015 and 2016 models. 562 

Community Location Transitions1 Percent of Total Area Pixels 

Prairie Dog Town 
Unchanged Pixels 93.3 

PDG ↔ PDF 6.7 

Off-Town 

Unchanged Pixels 75.7 

COOL ↔ SNOW 14.1 

COOL ↔ WARM 6.7 

SNOW ↔ WARM 3.5  

1Plant communities on prairie dog towns are grass-dominated (PDG) and forb-dominated (PDF); 563 

plant communities in off-town areas are cool season grass-dominated (COOL), warm season 564 

grass-dominated (WARM), and snowberry-dominated (SNOW). 565 

 566 
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 580 

 581 

 582 

 583 

 584 

 585 

 586 

 587 
Figure 5: Random forest classification maps from 2015 and 2016 of one pasture in the study area 588 

in north central South Dakota.  Plant communities on prairie dog towns are grass-dominated 589 

(PDG) and forb-dominated (PDF); plant communities in off-town areas are cool season grass-590 

dominated (COOL), warm season grass-dominated (WARM), and snowberry-dominated 591 

(SNOW). 592 
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